As it was shown earlier, a wide class of nonlinear 3-dimensional (3D) fluid flows of incompressible viscous fluid can be described by only one scalar function dubbed the quasi-potential. This class of fluid flows is characterized by a three-component velocity field having a two-component vorticity field. Both these fields may, in general, depend on all three spatial variables and time. In this paper, the governing equations for the quasi-potential are derived and simple illustrative examples of 3D flows in the Cartesian coordinates are presented. The generalisation of the developed approach to the fluid flows in the cylindrical and spherical coordinate frames represents a nontrivial problem that has not been solved yet. In this paper, this gap is filled and the concept of a quasi-potential to the cylindrical and spherical coordinate frames is further developed. A few illustrative examples are presented which can be of interest for practical applications.