Glioblastoma (GBM) constitutes the most common primary brain tumor and it remains incurable despite therapeutic advances. The high infiltration/invasion potential of GBM cells is considered to be one of the reasons for the inevitable recurrence of the disease. Radiotherapy (RT) is part of the standard care for patients with GBM, and its benefits on overall survival are extensively reported. However, numerous preclinical studies show that X-ray irradiation can enhance the motility of GBM cells. In the present review, we bring together state-of-the-art research on the impact of radiation on GBM cell motility. The mechanisms through which irradiation impacts the brain tumor microenvironment and the tumor cells themselves, leading to more aggressive/invasive tumors, are described. Finally, we summarize potential pharmacological strategies to overcome this problem. Clinical data validating the occurrence of these processes are urgently needed as they could be of great value for patient outcomes. With this comprehensive review, we expect to highlight the need for methods which allow for monitoring the post-irradiation invasive behavior of GBM in patients.