Since the last few decades, there have been tremendous technological advancements in communication, aeronautics, automobiles, textile engineering, nuclear energy, medical sciences and die-making industries. These have necessitated the use of some totally new and hitherto unknown high-strength temperature-resistant, tough and difficult-tomachine materials and, consequently, some newer unconventional processes for their efficient machining. It has been well established that non-traditional machining processes (NTMPs) far surpass their traditional counterparts in machining such advanced materials with respect to tolerance, surface finish, accuracy, complexity and miniatureness of the machined product/part. These NTMPs are also found to be more effective and economical. Choosing the most appropriate NTMP for generation of a desired shape feature on a given work material involves consideration of numerous conflicting qualitative and quantitative criteria. This paper proposes the application of fuzzy axiomatic design principles for selection of the most suitable NTMPs for generating cavities on ceramics and micro-holes on hardened tool steel and titanium materials, based on their practical/industrial importance. For micro-drilling operation on hardened tool steel, electrical discharge machining is found to be the best process followed by abrasive jet machining and ultrasonic machining. On the other hand, for generation of micro-holes on titanium, electrochemical machining is the most suitable process. Abrasive jet machining emerges out as the most efficient process for generating blind cavities on ceramics. These results are well in accordance with the expected machining practices and perfectly match with the decisions of the machining professionals.