mostly based on fluorescent (FL) agents of high brightness and combines exceptional optical properties with biocompatibility, biodegradability, and precise targeting both in vivo and in vitro. This includes inorganic semiconductor quantum dots, [2] carbon nanodots, [3] organic molecular dyes, [4] and genetically encoded universal FL proteins. [5] Additional specific class of extrinsic FL nanoprobes is amyloidbinding small molecule ligands (thioflavin T, Congo red and more) employed for tracking the kinetics of amyloid fibrils growth. [6] Each of the imaging agents has its inherent mechanism of photon emission, which defines its figures of merit for bioimaging: FL spectral region, quantum yield (QY), and photobleaching. [7,8] For instance, quantum dots and organic dye molecules exhibit FL in the visible range and have very high QY exceeding 90%. However, the organic molecular dyes are limited for long-term bioimaging applications because of photobleaching issues. The biocompatibility is another basic parameter of any biolabels, which is especially critical for some organic dyes and inorganic semiconductor quantum dots, containing heavy metals. Recently found FL carbon nanodots are biocompatible but have a low QY. [9] The green fluorescence protein (GFP) and its homologues are the only molecules, known until today, having biological origin FL and providing unique biocompatibility. These proteins exhibit pronounced FL with QY reaching 90% covering the entire visible spectrum, which makes them unique FL tags [10] among unlimited number of nonfluorescent peptide and protein biomolecules. [1,2,5,7] Alternative composition-insensitive visible FL was recently found in biological and bioinspired nanostructures characterized by specific ordering of biomolecules into antiparallel β-sheets structures. This includes a wide variety of diverse biomolecular compositions, such as amyloidogenic proteins, [11,12] PEGylated peptides, [13,14] nonaromatic biogenic, and synthetic peptides [15] and recently natural silk fibrils. [16] The basic features of these FL nanostructures are similar fibrillar morphology, original β-sheets secondary structure, and identical visible FL optical spectrum. These common structural and optical properties enable to relate all of them to a wide class of thermodynamically stable disease-and nondiseased-related amyloid structures. [17][18][19] Such β-sheet structures and visible FL can also Nanoscale bioimaging is a highly important scientific and technological tool, where fluorescent (FL) proteins, organic molecular dyes, inorganic quantum dots, and lately carbon dots are widely used as light emitting biolabels. In this work, a new class of visible FL bioorganic nanodots, self-assembled from short peptides of different composition and origin, is introduced. It is shown that the electronic energy spectrum of native nonfluorescent peptide nanodots (PNDs) is deeply modified upon thermally mediated refolding of their biological secondary structure from native metastable to stable β-sheet rich structure. This ...