Due to the dynamic coupling effects of solar radiation, longwave radiation, convective heat transfer, shadows, and other factors, the temperature field and effect of steel structures are significantly non-uniform, differing from traditional concepts that regard the temperature variation of steel structures as a slow and uniform progress. This difference can hinder the correct understanding of the thermal behavior of steel structures and ignore some potential safety hazards. This paper provides a review of the studies for the non-uniform temperature field and effect of steel structures, and presents some outlooks on future developments on the basis of the current research situation. A summary of research on the temperature field and effect of space structures, bridges and radio telescopes initially establishes the basic cognitive framework for this field. In addition, then, the basic principles of the numerical simulation of temperature fields are introduced through heat transfer mechanism, and the experimental test methods of temperature and its effects are described based on typical test cases. Finally, with a view to the future, some suggestions and opinions are provided in consideration of deficiencies in the current research status. This paper hopes to provide some valuable references for future research in this field through research summary, method introduction and outlook.