We discuss what happens when a field receiving an Aharonov-Bohm (AB) phase develops a vacuum expectation value (VEV), with an example of an Alice string in a U (1) × SU (2) gauge theory coupled with complex triplet scalar fields. We introduce scalar fields belonging to the doublet representation of SU (2), charged or chargeless under the U (1) gauge symmetry, that receives an AB phase around the Alice string. When the doublet develops a VEV, the Alice string turns to a global string in the absence of the interaction depending on the relative phase between the doublet and triplet, while, in the presence of such an interaction, the Alice string is confined by a soliton or domain wall and therefore the spontaneous breaking of a spatial rotation around the string is accompanied. We call such an object induced by an AB phase as an "AB defect", and argue that such a phenomenon is ubiquitously appearing in various systems.