The capacity is a powerful tool with exponential coefficients to represent the interaction phenomenon among decision criteria, but its random generation becomes a tough issue for dealing with the monotonicity with all inclusion subsets as well as the complex constraints of decision preference. In this paper, we adopt a kind of explicit interaction index, the nonadditivity index, to construct two types of quasi-random generation methods of capacity under a given decision interaction preference. Compared to the existing random generation algorithms, the methods have relatively satisfactory performance on the statistics characteristic of generated capacities but need rather less calculation effort on the generation process. We also show the effectiveness of proposed quasi-random generation methods by an illustrative decision example.