2014
DOI: 10.1515/snde-2013-0108
|View full text |Cite
|
Sign up to set email alerts
|

Noncausality and inflation persistence

Abstract: Standard-Nutzungsbedingungen:Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2017
2017
2023
2023

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(1 citation statement)
references
References 34 publications
0
1
0
Order By: Relevance
“…The motivation behind the S-TVP-SV model stems from the empirical literature on inflation modelling. Recently, evidence has been found of non-normality in modelling inflation persistence, leading to increased interest in non-Gaussian (fat-tailed) distributions for modelling inflation dynamics (Lanne and Saikkonen, 2011;Lanne et al, 2012;Chiu et al, 2014;Lanne, 2015). Our point of departure is an autoregressive version of the unobserved components with stochastic volatility (UC-SV) model, proposed by Stock and Watson (2007).…”
Section: Introductionmentioning
confidence: 99%
“…The motivation behind the S-TVP-SV model stems from the empirical literature on inflation modelling. Recently, evidence has been found of non-normality in modelling inflation persistence, leading to increased interest in non-Gaussian (fat-tailed) distributions for modelling inflation dynamics (Lanne and Saikkonen, 2011;Lanne et al, 2012;Chiu et al, 2014;Lanne, 2015). Our point of departure is an autoregressive version of the unobserved components with stochastic volatility (UC-SV) model, proposed by Stock and Watson (2007).…”
Section: Introductionmentioning
confidence: 99%