Trianionic pincer and pincer-type ligands are the focus of this review. Metal ions from across the periodic table, from main group elements, transition metals, and the rare earths, are combined with trianionic pincer ligands to produce some of the most interesting complexes to appear in the literature over the past decade. This review provides a comprehensive examination of the synthesis, characterization, properties, and catalytic applications of trianionic pincer metal complexes. Some of the interesting applications employing trianionic pincer and pincer-type complexes include: (1) catalyzed aerobic oxidation, (2) alkene isomerization, (3) alkene and alkyne polymerization, (4) nitrene and carbene group transfer, (5) fundamental transformations such as oxygen-atom transfer, (6) nitrogen-atom transfer, (7) O2 activation, (8) C-H bond activation, (9) disulfide reduction, and (10) ligand centered storage of redox equivalents (i.e. redox active ligands). Expansion of the architecture, type of donor atoms, chelate ring size, and steric and electronic properties of trianionic pincer ligands has occurred rapidly over the past ten years. This review is structured according to the type of pincer donor atoms that bind to the metal ion. The type of donor atoms within trianionic pincer and pincer-type ligands to be discussed include: NCN(3-), OCO(3-), CCC(3-), redox active NNN(3-), NNN(3-), redox active ONO(3-), ONO(3-), and SNS(3-). Since this is the first review of trianionic pincer and pincer-type ligands, an emphasis is placed on providing the reader with in-depth discussion of synthetic methods, characterization data, and highlights of these complexes as catalysts.