We investigate nonclassicality and decoherence of field states generated with the non-Gaussian operation of photon addition to a two-mode squeezed thermal state (TSTS) using the normally ordered density operator of the photon-added TSTS (PTSTS). The normalization factor of the PTSTS is just a Jacobi polynomial of the squeezing parameter γ and the average photon numbern of the thermal field. We show that the fields in such states exhibit remarkable quantum features, such as sub-Poissonian photon statistics, the anti-bunching effect, and photon-number distribution. The nonclassicality is discussed in phase space based on the partial negativity of the Wigner function (WF) with two-variable Hermite polynomials. The results show that the non-Gaussian WF always exhibits the quantum interference structure caused by the two-mode squeezing operation and has some negative regions for any value ofn, γ, and the photon-addition numbers m, n. In addition, the effect of decoherence on the PTSTS in the thermal channel is studied by analytically deriving the time-evolution WF. We find that the WF becomes Gaussian (corresponding to a classical thermal state) at long times, losing its nonclassicality as a result of decoherence, and a larger m (or n) leads to a longer decoherence time κt.