Abstract. This article is the sequel to [27]. We start by developing a theory of noncommutative (=NC) mixed motives with coefficients in any commutative ring. In particular, we construct a symmetric monoidal triangulated category of NC mixed motives, over a base field k, and a full subcategory of NC mixed Artin motives. Making use of Hochschild homology, we then apply Ayoub's weak Tannakian formalism to these motivic categories. In the case of NC mixed motives, we obtain a motivic Hopf dg algebra, which we describe explicitly in terms of Hochschild homology and complexes of exact cubes. In the case of NC mixed Artin motives, we compute the associated Hopf dg algebra using solely the classical category of mixed Artin-Tate motives. Finally, we establish a short exact sequence relating the Hopf algebra of continuous functions on the absolute Galois group with the motivic Hopf dg algebras of the base field k and of its algebraic closure. Along the way, we describe the behavior of Ayoub's weak Tannakian formalism with respect to orbit categories and relate the category of NC mixed motives with Voevodsky's category of mixed motives.