Newtonian gravity predicts the existence of white dwarfs with masses far exceeding the Chandrasekhar limit when the equation of state of the degenerate electron gas incorporates the effect of quantum spacetime fluctuations (via a modified dispersion relation) even when the strength of the fluctuations is taken to be very small. In this paper, we show that this Newtonian "super-stability" does not hold true when the gravity is treated in the general relativistic framework. Employing dynamical instability analysis, we find that the Chandrasekhar limit can be reassured even for a range of high strengths of quantum spacetime fluctuations with the onset density for gravitational collapse practically remaining unaffected.