We investigate scalar condensations around noncommutative compact reflecting stars. We find that the neutral noncommutative reflecting star cannot support the existence of scalar field hairs.In the charged noncommutative reflecting star spacetime, we provide upper bounds for star radii.Above the bound, scalar fields cannot exist outside the star. In contrast, when the star radius is below the bound, we show that the scalar field can condense. We also obtain the largest radii of scalar hairy reflecting stars.