The effective potential of quantized scalar field on fuzzy sphere is evaluated to the twoloop level. We see that one-loop potential behaves like that in the commutative sphere and the Coleman-Weinberg mechanism of the radiatively symmetry breaking could be also shown in the fuzzy sphere system. In the two-loop level, we use the heavy-mass approximation and the high-temperature approximation to perform the evaluations. The results show that both of the planar and nonplanar Feynman diagrams have inclinations to restore the symmetry breaking in the tree level. However, the contributions from planar diagrams will dominate over those from nonplanar diagrams by a factor N 2 . Thus, at heavy-mass limit or hightemperature system the quantum field on the fuzzy sphere will behave like those on the commutative sphere. We also see that there is a drastic reduction of the degrees of freedom in the nonplanar diagrams when the particle wavelength is smaller than the noncommutativity scale.