This article is a review of magnetic resonance imaging (MRI) of incidental focal liver lesions. This review provides an overview of liver MRI protocol, diffusion-weighted imaging, and contrast agents. Additionally, the most commonly encountered benign and malignant lesions are discussed with emphasis on imaging appearance and the diagnostic performance of MRI based on a review of the literature. (HEPATOLOGY 2011;54:2227-2237 T he incidence of incidentally detected focal liver lesions (FLL) parallels growth in imaging utilization. The majority of FLL arising in noncirrhotic livers are benign. Hemangiomas, focal nodular hyperplasias (FNH), and adenomas (HCA) are the most commonly encountered solid benign lesions.
1-3The most commonly encountered malignant lesions in noncirrhotic livers are metastases. Hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC) occur in the setting of chronic liver disease.Maximizing specificity and accuracy of cross-sectional imaging in the context of these incidental liver lesions is paramount in avoiding unnecessary biopsies, which may portend a postprocedural morbidity of 2.0% to 4.8% and mortality of 0.05%. [4][5][6] Ultrasound, computed tomography (CT), and magnetic resonance imaging (MRI) are the main liver imaging modalities. A meta-analysis comparing contrast-enhanced ultrasound, CT, and MRI in evaluating incidental FLLs demonstrated similar diagnostic performance with specificities ranging from 82%-89% and no significant difference in the summary receiver operating characteristic between modalities.7 Given the lack of ionizing radiation and relative nonavailability of ultrasound contrast in the U.S., MRI is the imaging test of choice for FLL characterization, demonstrating similar if not superior performance to CT. This review focuses on the diagnostic performance of MRI in evaluating the most common FLL in noncirrhotic livers with additional discussion of HCC and ICC, which, although highly associated with chronic liver disease, are important differential considerations.
Liver MRIBasic Protocol. A comprehensive liver protocol evaluates the parenchyma, vasculature, and biliary system. This is accomplished by way of a combination of single-shot T2-weighted fast spin-echo, gradient echo T1-weighted in-and opposed-phase, fat suppressed T2-weighted, dynamic pre-and postcontrast T1-weighted imaging and potentially subtraction of prefrom postcontrast image sets.8 High-quality images require compromise between achievable resolution and the need for breath-holding, which limits each sequence to 20 seconds or less. Breath-holding is not always possible in sick patients. As a result, modifications to the basic protocol may include the addition of free-breathing sequences, respiratory-gating, motion correction techniques (i.e., BLADE or PROPELLER or radial acquisition of k-space).MRI quality can be variable due to differences in sequences, gradient, and magnetic field strength. In recognition of this variability, a recent publication on behalf