We introduce a family of Maxwellian Demons for which correlations among information bearing degrees of freedom can be calculated exactly and in compact analytical form. This allows one to precisely determine Demon functional thermodynamic operating regimes, when previous methods either misclassify or simply fail due to approximations they invoke. This reveals that these Demons are more functional than previous candidates. They too behave either as engines, lifting a mass against gravity by extracting energy from a single heat reservoir, or as Landauer erasers, consuming external work to remove information from a sequence of binary symbols by decreasing their individual uncertainty. Going beyond these, our Demon exhibits a new functionality that erases bits not by simply decreasing individual-symbol uncertainty, but by increasing inter-bit correlations (that is, by adding temporal order) while increasing single-symbol uncertainty. In all cases, but especially in the new erasure regime, exactly accounting for informational correlations leads to tight bounds on Demon performance, expressed as a refined Second Law of thermodynamics that relies on the Kolmogorov-Sinai entropy for dynamical processes and not on changes purely in system configurational entropy, as previously employed. We rigorously derive the refined Second Law under minimal assumptions and so it applies quite broadly-for Demons with and without memory and input sequences that are correlated or not. We note that general Maxwellian Demons readily violate previously proposed, alternative such bounds, while the current bound still holds. As such, it broadly describes the minimal energetic cost of any computation by a thermodynamic system. 'intelligence' is necessary; a frictionless trapdoor connected to a spring acting as a valve, for example, cannot achieve the same feat [10].Maxwell's Demon posed a fundamental challenge. Either such a Demon could not exist, even in principle, or the Second Law itself needed modification. A glimmer of a resolution came with Szilard's reformulation of Maxwell's Demon in terms of measurement and feedback-control of a single-molecule engine. Critically, Szilard emphasized hitherto-neglected information-theoretic aspects of the Demon's operations [11]. Later, through the works of Landauer, Penrose, and Bennett, it was recognized that the Demon's operation necessarily accumulated information and, for a repeating thermodynamic cycle, erasing this information has an entropic cost that ultimately compensates for the total amount of negative entropy production leveraged by the Demon to extract work [12][13][14]. In other words, with intelligence and information-processing capabilities, the Demon merely shifts the entropy burden temporarily to an information reservoir, such as its memory. The cost is repaid whenever the information reservoir becomes full and needs to be reset. This resolution is concisely summarized in Landauer's principle [15]: the Demon's erasure of one bit of information at temperature T K requires at least k T ...