The problem of relaxation of a nonequilibrium state to the state of molecular hydrodynamics is considered for a classical system of interacting particles using the Zubarev nonequilibrium statistical operator method. The wave-vector and frequency dependencies of the dynamical structure factor and momentum-momentum transverse correlation function are investigated on the basis of the appropriate generalized transport equations. Comparison with the results of molecular hydrodynamics and molecular-dynamics simulations is given and the characteristic time intervals of the studied relaxation processes are determined.