2023
DOI: 10.7494/opmath.2023.43.6.741
|View full text |Cite
|
Sign up to set email alerts
|

Nonexistence of global solutions for a nonlinear parabolic equation with a forcing term

Abstract: The purpose of this work is to analyze the blow-up of solutions of a nonlinear parabolic equation with a forcing term depending on both time and space variables \[u_t-\Delta u=|x|^{\alpha} |u|^{p}+{\mathtt a}(t)\,{\mathbf w}(x)\quad\text{for }(t,x)\in(0,\infty)\times \mathbb{R}^{N},\] where \(\alpha\in\mathbb{R}\), \(p\gt 1\), and \({\mathtt a}(t)\) as well as \({\mathbf w}(x)\) are suitable given functions. We generalize and somehow improve earlier existing works by considering a wide class of forcing terms t… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
references
References 0 publications
0
0
0
Order By: Relevance