2021
DOI: 10.9734/jamcs/2021/v36i830387
|View full text |Cite
|
Sign up to set email alerts
|

Nonexistence of Global Solutions to A Semilinear Wave Equation with Scale Invariant Damping

Abstract: We obtain a blowup result for solutions to a semilinear wave equation with scale-invariant dissipation. We perform a change of variables that transforms our starting equation into a Generalized Tricomi equation, then apply Kato’s lemma, we can prove a blowup result for solutions to the transformed equation under some assumptions on the initial data. In the critical case, we use the fundamental solutions of the Generalized Tricomi equation to modify Kato’s lemma to deal with it.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 19 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?