Background: An improved second-tier test is needed to reduce the false-positive rate of newborn screening (NBS) for inborn metabolic disorders in Xuzhou, China.Methods: We designed an expanded second-tier assay using newborn dried blood spots (DBSs). Analytical and clinical performance were evaluated in 53 newborns with methylmalonic acidemia (MMA) or propionic acidemia (PA) reported by the Xuzhou Maternity and Child Health Care Hospital NBS program. Additionally, we analyzed NBS data regarding seasonal variation of metabolites, birth weight and gestational age to improve the identification of true positive MMA/PA individuals.Results: Among the 53 MMA/PA individuals assessed, two pathogenic or likely pathogenic (P/LP) variants in an MMA/PA-associated gene were identified in 46 patients, and a pathogenic variant and a variant of unknown significance (VUS) were identified in 7 patients. No such variants were detected in MMA/PA false-positive individuals or healthy controls. Ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS)-based analysis of the initial NBS metabolic profile correctly identified MMA/PA individuals and reduced the initial NBS false-positive rate by 98.86%. MMA/PA false-positive infants in Xuzhou, China, were most likely to be summer-born.Conclusion: We established a two-pronged approach to reduce false positives by nearly 99% and provided a novel NBS strategy. Challenges in neonate metabolic testing and DNA variant interpretation regarding season, birth weight and pregnancy status remain for this Chinese population.