Lung cancer is a malignant tumor with the highest morbidity and mortality rate. Early screening and treatment are crucial in effectively reducing lung cancer mortality. This study presents a novel label-free bioanalysis system integrating fiber optic sensing and two-dimensional (2D) scattering imaging technologies, offering real-time, high-efficiency detection capabilities. The cladding on the fiber surface, followed by immobilization of specific antibodies. Variations in the evanescent wave field at the fiber surface induce changes in the transmission intensity, enabling highly sensitive, realtime detection of target biomolecules. Simultaneously, the light beam transmitted through the fiber optic excites individual biological cells in the fluid chamber, while a micro-optical system captures their 2D light scattering patterns, enabling precise cell identification and classification. The integration of these two technologies allows the sensor system to perform visualized single-cell identification and classification, as well as efficient biomarker detection at the molecular level. Compared to traditional single-technology approaches, this innovative system offers significant advantages in sensitivity, specificity, and detection speed, opening new pathways for bioanalysis. It demonstrates broad application potential in areas such as label-free ion detection and cell classification, particularly in early tumor screening.