Sustained ventricular tachycardia (VT) and ventricular fibrillation (VF)are typically a manifestation of significant structural heart disease and often associated with a high risk of sudden cardiac death. Implantable cardioverter defibrillators (ICDs) remain the mainstay of therapy for prevention of sudden cardiac death associated with these arrhythmias. 1 However, ICDs treat the arrhythmia after it occurs and does not prevent the arrhythmia. Recurrent ventricular arrhythmias can lead to multiple ICD shocks that are painful, decrease quality of life and cause post-traumatic stress disorder. Spontaneous VT and ICD shocks are also associated with an increased risk of death and progressive heart failure.2 Antiarrhythmic drugs, notably amiodarone, reduce arrhythmias for some patients, but have limited efficacy for long-term management, particularly for scar-related re-entrant arrhythmias.
3In addition, antiarrhythmic drugs have the potential for significant adverse effects that includes negative inotropy, pro-arrhythmia and non-cardiac organ toxicities that limit their long-term use.3,4 Catheter ablation offers an alternative therapy for preventing arrhythmias, and can be life-saving when frequent episodes (VT storm) threaten survival.VT or repetitive premature ventricular contractions (PVCs) may also occur in the absence of structural heart disease.5 These arrhythmias are often termed 'idiopathic' and generally carry a benign prognosis, but symptoms warrant therapy in some patients. In addition, frequent ventricular arrhythmia can lead to ventricular dysfunction. 6 The cause of depressed ventricular function is often unclear at the initial presentation and the diagnosis of arrhythmia induced ventricular dysfunction may become apparent only after effective suppression of PVCs or VT.
Mapping and Ablation Technologies and Procedural ConsiderationsRadiofrequency (RF) current remains the most commonly used energy source. Lesion size is limited by coagulum formation on the electrode when electrode temperature exceeds 70 degrees Celsius.
AbstractCatheter ablation has emerged as an important and effective treatment option for many recurrent ventricular arrhythmias. The approach to ablation and the risks and outcomes are largely determined by the nature of the severity and type of underlying heart disease. In patients with structural heart disease, catheter ablation can effectively reduce ventricular tachycardia (VT) episodes and implantable cardioverter defibrillator (ICD) shocks. For VT and symptomatic premature ventricular beats that occur in the absence of structural heart disease, catheter ablation is often effective as the sole therapy. Advances in catheter technology, imaging and mapping techniques have improved success rates for ablation. This review discusses current approaches to mapping and ablation for ventricular arrhythmias.