Current gene therapy protocols often suffer from an inability to monitor the site, level and persistence of gene expression following somatic DNA delivery. Herpes simplex virus 1 thymidine kinase (HSV1-tk) is currently under intensive investigation as a reporter gene for in vivo imaging of reporter gene expression. The presence of the HSV1-tk reporter gene is repetitively and non-invasively monitored by systemic injection of positron-emitting, radionuclide-labeled thymidine analogues or acycloguanosine HSV1-TK substrates and subsequent detection, by positron emission tomography, of trapped, phosphorylated product. To improve the efficacy of the HSV1-tk PET reporter gene system, both alternative substrates and mutations in the HSV1-tk gene have been described. We used a replication defective adenovirus to deliver the HSV1-sr39tk mutant enzyme and the wild-type HSV1-tk enzyme to mice. HSV1-sr39TK demonstrates greater sensitivity than wild-type HSV1-TK enzyme in vivo, using 9-[(4-[ 18 F]fluoro-3-hydroxymethylbutyl)guanine as probe, following adenovirus-mediated hepatic expression in mice. Using this adenoviral delivery system, the location, magnitude and duration of HSV1-sr39tk PET reporter gene expression could be non-invasively, quantitatively and repetitively monitored for over 3 months by microPET.