This paper proposes a novel experimental test apparatus that permits direct measurements of tyre/asperity normal contact forces under rolling conditions without interfacial layer. A reduced-sized pneumatic tyre is set rolling on the exterior surface of a cylindrical test rig simulating a smooth road surface except a single asperity of simple geometric shape connected to an embedded force transducer. Distinct asperity geometries lead to similar shapes of force signal but different magnitudes whose relationships with the indentation have exponents close to those in classical analytical solutions. By analyzing the time signals of the contact force and their frequency contents for different rolling speeds, the quasi-static nature of the contact, commonly assumed in numerical models, is verified