Honeycomb sandwich panels are widely used in marine, aerospace, automotive and shipbuilding industries. High strength to weight and excellent energy absorption are features that make these structures unique. Foam filling the honeycomb core enhances the mechanical properties of sandwich panels considerably. In the present study, the buckling behavior of Nomex honeycomb core/glass-epoxy face sheet sandwich panel for both bare and foam-filled honeycomb core is investigated numerically and experimentally, considering the viscoelastic properties of the sandwich panel. Indeed, the viscoelastic properties of the composite face sheet and foam are determined by relaxation test and are implemented in ABAQUS using VUmat code. The finite element method is also performed using ABAQUS to model the buckling behavior of the sandwich panel incorporating both elastic and viscoelastic material behaviour. The effects of composite face sheet lay-up, core thickness, core cell size, and foam filling are also evaluated. The experimental and numerical results show that the foam increases the critical buckling load and energy absorption.