Conference on Lasers and Electro-Optics 2021
DOI: 10.1364/cleo_qels.2021.ftu2l.1
|View full text |Cite
|
Sign up to set email alerts
|

Nonlinear Control of PT-symmetry and Topological States

Abstract: We demonstrate that optical nonlinearity can effectively modulate the loss of a topological defect waveguide in a non-Hermitian photonic lattice, leading to switching between PT and non-PT-symmetric regimes and control of topological zero modes.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

0
3
0
3

Year Published

2021
2021
2022
2022

Publication Types

Select...
2
1

Relationship

1
2

Authors

Journals

citations
Cited by 3 publications
(6 citation statements)
references
References 7 publications
0
3
0
3
Order By: Relevance
“…However, by combining topology with nonlinearity [5][6][7][8][9][10][11][12][13][14][15][16][17][18][19][20], many opportunities for fundamental discoveries and new functionalities of the devices arise [21]; this is appealing also because nonlinearity inherently exists or is straightforwardly activated in most of the currently used linear topological photonic systems. The studies of nonlinear topological phenomena in photonics include, for example, nonlinear topological edge states and solitons [5][6][7][8][13][14][15][16][17][18], topological phase transitions activated via nonlinearity [9][10][11][12], nonlinear frequency conversion [19,20], topological lasing [22][23][24][25][26][27], and nonlinear tuning of non-Hermitian topological states [28,29].…”
mentioning
confidence: 99%
“…However, by combining topology with nonlinearity [5][6][7][8][9][10][11][12][13][14][15][16][17][18][19][20], many opportunities for fundamental discoveries and new functionalities of the devices arise [21]; this is appealing also because nonlinearity inherently exists or is straightforwardly activated in most of the currently used linear topological photonic systems. The studies of nonlinear topological phenomena in photonics include, for example, nonlinear topological edge states and solitons [5][6][7][8][13][14][15][16][17][18], topological phase transitions activated via nonlinearity [9][10][11][12], nonlinear frequency conversion [19,20], topological lasing [22][23][24][25][26][27], and nonlinear tuning of non-Hermitian topological states [28,29].…”
mentioning
confidence: 99%
“…Finally, the study of nonlinear effects on other systems is still in its infancy and surely many remains to be discovered. Such systems include higher-order topological systems [85][86][87][88][89][90][91][92], Floquet systems [93][94][95][96][97][98][99], and non-Hermitian systems [100][101][102][103][104][105][106][107][108][109][110][111][112][113][114][115][116]. Even among topological semimetals, many different phases could be investigated, such as nodal line semimetals [117], type-II Weyl semimetals [118][119][120], multi-Weyl semimetals [121,122], and triple-fermion semimetals [123].…”
Section: Discussionmentioning
confidence: 99%
“…3.1 无序系统 无序系统普遍出现在固体物理体系中关于输运过程、电导等的研究 [63][64][65][66] 随机扰动使得折射率以一定的无序度改变,另外结构中要保证无序是不随时间变 化的,即沿传播方向折射率分布不变 [67] 。2008 年 Yoav Lahini 等人在一维等间距 的耦合光波导阵列(铝砷化镓波导)中也实验观察到了安德森局域化现象 [42] ,描 述该系统的哈密顿量可以用公式(2)表示,实验中他们控制耦合波导之间间距 不变,而每个波导的宽度在一定范围内随机变化(对角无序) 。他们理论预测并 且实验观察到了局域态的传播,对于有限系统同时也存在扩展的本征态,而这些 扩展态在无限系统下将是局域的,只是局域化长度会更大。早期这两项研究工作 也都讨论了非线性效应对于安德森局域化的影响,他们发现非线性效应会增强局 域化过程,这与更早之前非线性自聚焦效应导致的光孤子的结论相像 [68] 。随后研 究者也在波导间距随机变化(非对角无序)的飞秒激光直写玻璃光波导阵列中观 察到了安德森局域化现象 [69] 。光在不同无序度下的扩散过程也被广泛研究并被实 验上观察到,如光在周期系统中的扩散是弹道式输运过程,在无序系统中表现出 局域化特征,在一定无序度的结构中表现出扩散式过程(扩散速度介于前二者之 间) 。 安德森局域化要求势场是不随时间变化的, 而对于无序含时的系统, Segev 研 究组发现波的输运表现出超传输(hyper-transport)现象 [70] ,即扩散速度快于周期 系统中的弹道式输运过程,并且动量空间谱宽也随时间扩展。近来,人们在无序 铌酸锂光子晶体和硅光子晶体结构中也观察到了安德森局域化现象 [71,72] 。 耦合光波导阵列系统灵活的可调控能力也被用来研究准周期晶格结构(介 于周期系统与无序系统之间)中的物理。准周期系统缺少长程平移对称性,表现 出准周期性(长程有序) ,其中两个典型的例子分别为 Harper 模型和 Fibonacci 模型。Harper 模型是外加磁场的二维方格模型在一维模型上的投影,可以用来研 究 Hofstadter 蝴蝶能谱、拓扑边界态等 [73] 。Harper 模型和 Fibonacci 模型理论上具 有相同的拓扑分类 [74] ,人们随后实验上通过对局域边界态有无的观察证实了这一 观点 [75] (如图 4(b)所示) 。通过调制波导折射率和耦合系数的分布,他们实验上 分别实现了对角和非对角准周期一维光波导阵列,并在相应系统中观察到了局域 -去局域化转变过程 [76,77] 。另外,Mordechai Segev 研究组利用原先样品的制备技 术在准周期系统中引入无序度,并且观察到了与周期系统不同的无序增强准周期 系统输运过程的现象 [78] 。 图 4 (a) 二维无序光子晶格中的安德森局域化现象 [67] ;(b) 一维准周期飞秒激光直写光波导 阵列 [75] ;(c) 飞秒激光直写螺旋式波导阵列结构实现 Floquet 拓扑绝缘体 [25] ;(d) 弯曲波导阵 列实现等效磁场,模拟 Aharonov-Bohm 效应 [79] ;在耦合环腔阵列结构中产生(e) 拓扑绝缘体 激光 [80] 、(f) 拓扑保护多光子量子光源 [81] ;(g) 基于谷光子晶体结构设计等比分束器并实现 双光子量子干涉 [82] ;(h) 无序拓扑安德森绝缘体结构 [83] ;(i) 基于一维 SSH 模型在硅基结构 中产生关联光子对 [84] ;(j) "含时"哈密顿量系统用于拓扑泵浦 [76] ;(k) 奇偶-时间对称与对称破 缺交界面处局域的拓扑边界态 [85] ; (l) 非厄米 SSH 模型中非线性对于奇偶-时间对称相变过程 的影响 [22] 。 Fig. 4.…”
Section: 模拟型量子模拟unclassified
“…4. (a) Anderson localization in a two-dimensional photonic lattice [67] ; (b) Simulation of one-dimensional quasicrystals in femtosecond-laser-written (FLW) optical waveguides [75] ; (c) Realization of photonic Floquet topological insulators in a FLW helical waveguide array [25] ; (d) Realization of an effective magnetic field and simulation of Aharonov-Bohm effect using curved waveguide arrays [79] ; Generation of (e) topological insulator laser [80] and (f) multiphoton quantum source [81] in coupled resonator arrays; (g) design of a 1:1 topological beam splitter in valley photonic crystals and realize the two-photon quantum interference [82] ; (h) photonic topological Anderson insulator [83] ; (i) generation of biphoton state in a SSH photonic lattice [84] ; (j) Topological pumping in a system described by a time-varying Hamiltonian [76] ; (k)Topological edge state in a photonic lattice at the interface between the structures with and without parity-time symmetry [85] ; (l) nonlinear tuning of PT symmetry and non-Hermitian topological states [22] .…”
Section: 模拟型量子模拟mentioning
confidence: 99%
See 1 more Smart Citation