2015 IEEE International Conference on Communications (ICC) 2015
DOI: 10.1109/icc.2015.7249394
|View full text |Cite
|
Sign up to set email alerts
|

Nonlinear diffusion adaptation with bounded transmission over distributed networks

Abstract: This paper introduces diffusion adaptation strategies over distributed networks with nonlinear transmissions, motivated by the necessity for bounded transmit power. Local information is exchanged in real-time with neighboring nodes in order to estimate a common parameter vector via constrained nonlinear transmissions, using an adaptive learning algorithm. We propose nonlinear diffusion strategies for such an adaptive estimation. We will study convergence properties of the proposed algorithm in the mean and the… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2

Citation Types

0
2
0

Year Published

2016
2016
2020
2020

Publication Types

Select...
3
2

Relationship

1
4

Authors

Journals

citations
Cited by 5 publications
(2 citation statements)
references
References 24 publications
0
2
0
Order By: Relevance
“…BasiciterativeLMStypemehodshavebeenquitepopularinseveralsignalprocessingestimation applications (Widrow,1985;Spanias,1993;Spanias,2016).However,thereisasignificantnumberof studiesrelatedtoconsensus-baseddistributedparameterestimation.See (Tsitsiklis,1984;Tsitsiklis etal.,1986;BertsekasandTsitsiklis,1989;Yin,1991)forearlyresearch,whichinspirednumerous applications. Distributed least-mean-square algorithm is introduced to estimate a linear system parameterinvariousscenarios (LopesandSayed,2008;Sayed,2009;Mateosetal.,2011;Stankovic et al, 2014;Lee et al, 2015). In these studies, sensors observe random data at every iteration, generatedbyalinearsystemwithaparametervector.In (Karetal.,2012),theauthorsproposedthe consensusplusinnovationschemefordistributedparameterestimationwithsingle-andmixed-time scales.Theyconsidernonlinearaswellaslinearsystemmodelsandprovideconvergenceanalysis.…”
Section: Introductionmentioning
confidence: 99%
“…BasiciterativeLMStypemehodshavebeenquitepopularinseveralsignalprocessingestimation applications (Widrow,1985;Spanias,1993;Spanias,2016).However,thereisasignificantnumberof studiesrelatedtoconsensus-baseddistributedparameterestimation.See (Tsitsiklis,1984;Tsitsiklis etal.,1986;BertsekasandTsitsiklis,1989;Yin,1991)forearlyresearch,whichinspirednumerous applications. Distributed least-mean-square algorithm is introduced to estimate a linear system parameterinvariousscenarios (LopesandSayed,2008;Sayed,2009;Mateosetal.,2011;Stankovic et al, 2014;Lee et al, 2015). In these studies, sensors observe random data at every iteration, generatedbyalinearsystemwithaparametervector.In (Karetal.,2012),theauthorsproposedthe consensusplusinnovationschemefordistributedparameterestimationwithsingle-andmixed-time scales.Theyconsidernonlinearaswellaslinearsystemmodelsandprovideconvergenceanalysis.…”
Section: Introductionmentioning
confidence: 99%
“…See [6]- [9] for the early works, which inspired numerous applications. Distributed least-mean-square (LMS) algorithm is introduced to estimate a linear system parameter in various scenarios [10]- [14]. In these works, sensors observe random data at very iteration, generated by a linear system with a parameter vector.…”
Section: Introductionmentioning
confidence: 99%