Abstract-In this paper, an impedance control strategy is proposed for a rigid robot collaborating with human by considering impedance learning and human motion intention estimation. The least square method is used in human impedance identification, and the robot can adjust its impedance parameters according to human impedance model for guaranteeing compliant collaboration. Neural networks (NNs) are employed in human motion intention estimation, so that the robot follows the human actively and human partner costs less control effort. On the other hand, the full-state constraints are considered for operational safety in human-robot interactive processes. Neural control is presented in the control strategy to deal with the dynamic uncertainties and improve the system robustness. Simulation results are carried out to show the effectiveness of the proposed control design.