Abstract. The present paper explores the capabilities of a tensegrity-inspired tower with regard to frequency tuning by shape morphing. To change the configuration of the proposed structure, shape-memory-alloy actuators are used. This actuation principle also takes advantage of the variation of the elastic modulus of shape-memory alloys associated with the martensitic transformation. The temperature modulation of the shape-memory-alloy wires is successfully achieved by Joule heating, through a proportional-integral-derivative controller, to change between a low-temperature shape and a high-temperature shape. The implementation of a short-time-Fourier-transform control algorithm allows for the correct identification of the dominant input frequency, associated with the dynamic excitation. This information is used to automatically change the configuration of the structure in order to shift its natural frequency away from that of the dynamic excitation. With this frequency tuning, one obtains a reduction of the accelerations throughout the structure up to about 80%. The good performance of the proposed control approach gives promising indications regarding the use of tensegrity systems, in combination with shape-memory alloys, for shapemorphing applications, and, in particular, for self-tuning structures.