Electric vehicles present an opportunity to reduce the substantial global footprint of road transportation. Cost and range anxiety issues, however, remain major roadblocks to their widespread adoption. One of the simplest ways to reduce cost is to remove components from the vehicle via novel topologies, estimation and control; to reduce range anxiety, charging infrastructure needs to be simplified and the power electronics in the vehicle made more efficient. This thesis proposes a bidirectional non-isolated fast charger integrated in the traction drivetrain of an electric vehicle that is enabled by a modular power electronic converter topology called the autoconverter module. The autoconverter module is an evolution of previous modular power electronic concepts with the goal of a highly integrated, high performance converter capable of being used in a number of applications through simple parallelization. By simplifying system design through the use of one base power conversion block, overall system cost can be reduced.Key to the realization of the power module is state estimation. To enable high performance operation of the system, low noise state information must be provided to the controller. State estimation is capable of filtering measurement noise to achieve this goal. However, conventional estimation techniques typically have low bandwidth and a convergence time associated with them, limiting the overall control system's performance. Higher performance techniques, such as receding horizon estimation, offer near-instantaneous estimation with noise rejection capabilities,