This paper introduces a stable adaptive PID-like control scheme for quadrotor Unmanned Aerial Vehicle (UAV) systems. The PID-like controller is designed to closely estimate an ideal controller to meet specific control objectives, with its gains being dynamically adjusted through a stable adaptation process. The adaptation process aims to reduce the discrepancy between the ideal controller and the PID-like controller in use. This method is considered model-free, as it does not require knowledge of the system’s mathematical model. The stability analysis performed using a Lyapunov method demonstrates that every signal in the closed-loop system is Uniformly Ultimately Bounded (UUB). The effectiveness of the proposed PID-like controller is validated through simulations on a quadrotor for path following, ensuring accurate monitoring of the target positions and yaw angle. Simulation results highlight the performance of this control scheme.