1983
DOI: 10.1103/physrevlett.50.1153
|View full text |Cite
|
Sign up to set email alerts
|

Nonlinear Field Theory of Large-Spin Heisenberg Antiferromagnets: Semiclassically Quantized Solitons of the One-Dimensional Easy-Axis Néel State

Abstract: The continuum field theory describing the low-energy dynamics of the large-spin onedimensional Heisenberg Bntiferromagnet is found to be the O(3) nonlinear sigma model. When weak easy-axis anisotropy is present, soliton solutions of the equations of motion are obtained and semiclassically quantized. Integer and half-integer spin systems are distinguished.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2

Citation Types

75
2,603
1
11

Year Published

1998
1998
2016
2016

Publication Types

Select...
6
2

Relationship

0
8

Authors

Journals

citations
Cited by 3,542 publications
(2,690 citation statements)
references
References 12 publications
75
2,603
1
11
Order By: Relevance
“…In particular, Haldane conjectured in 1983 that the half-odd integer and integer spins might behave essentially differently [3], which together with a field theoretic prediction of Affleck [4] for a logarithmic correction to the power-law behavior in the spin-spin correlation function in the spin-1 2 case, triggered an intensive study of HA ranging from the exact diagonalization [5,6] and Monte Carlo [7,8] to DMRG (density matrix renormalization group) [9][10][11]. These studies along with the Bethe ansatz solution for the spin-1 2 case [12] lead to a confirmation of the both claims.…”
mentioning
confidence: 99%
“…In particular, Haldane conjectured in 1983 that the half-odd integer and integer spins might behave essentially differently [3], which together with a field theoretic prediction of Affleck [4] for a logarithmic correction to the power-law behavior in the spin-spin correlation function in the spin-1 2 case, triggered an intensive study of HA ranging from the exact diagonalization [5,6] and Monte Carlo [7,8] to DMRG (density matrix renormalization group) [9][10][11]. These studies along with the Bethe ansatz solution for the spin-1 2 case [12] lead to a confirmation of the both claims.…”
mentioning
confidence: 99%
“…In this case, the Haldane state and the LD state of H (2) eff correspond to the ID state and the LD state of the present S = 2 model, respectively. The multicritical point among the Haldane, LD and Néel phases of H (2) eff is (∆ eff , D 2,eff ) (3.2, 2.9) [22], which reads (∆, D 4 ) (9.4, 8.7).…”
Section: Discussionmentioning
confidence: 84%
“…The multicritical point among the Haldane, LD and Néel phases of H (2) eff is (∆ eff , D 2,eff ) (3.2, 2.9) [22], which reads (∆, D 4 ) (9.4, 8.7). Thus the multicritical point among the ID, LD and Néel phases in Fig.3(c) is well explained.…”
Section: Discussionmentioning
confidence: 99%
See 1 more Smart Citation
“…It thus came as a surprise when Haldane conjectured in 1983 that quantum Heisenberg antiferromagnetic chains have qualitatively different properties according to whether the spin value is integer or half-integer [3].…”
Section: Introductionmentioning
confidence: 99%