Abstract. Aluminum alloy (Al-alloy) reinforced with Single walled carbon nanotubes (SWNT), which represents an important industrial application, is studied. Different beam theories (BT) are applied to investigate functionally graded (FG) beams made of Al-alloy reinforced with randomly oriented, straight and long SWNT. The Rayleigh-Ritz method is used to estimate the beam frequencies. First, the Mori-Tanak (M-T) homogenization technique is used to predict the effective material properties of the beams. Second, results from BT are verified against finite element (FE) simulations. Next, a parametric study is carried out in order to investigate the influence of SWNT volume fractions, SWNT distributions and beam edge-to-thickness ratios on the vibration behavior of the FG beam. Results demonstrate the important effect of the studied parameters on the dynamic behavior of the FG SWNT reinforced Al-alloy composite beams.