2017
DOI: 10.3390/s17010142
|View full text |Cite
|
Sign up to set email alerts
|

Nonlinear Fusion of Multispectral Citrus Fruit Image Data with Information Contents

Abstract: The main issue of vison-based automatic harvesting manipulators is the difficulty in the correct fruit identification in the images under natural lighting conditions. Mostly, the solution has been based on a linear combination of color components in the multispectral images. However, the results have not reached a satisfactory level. To overcome this issue, this paper proposes a robust nonlinear fusion method to augment the original color image with the synchronized near infrared image. The two images are fuse… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
5
0
2

Year Published

2017
2017
2023
2023

Publication Types

Select...
3
2
1

Relationship

0
6

Authors

Journals

citations
Cited by 8 publications
(7 citation statements)
references
References 27 publications
0
5
0
2
Order By: Relevance
“…(3) Spectral angle mapping (SAM) [51] reflects the degree of spectral distortion and calculates the angle between the corresponding pixels of the fused image and the reference image on the triad. SAM = 0 means that there is no spectral distortion:…”
Section: Evaluation Methodmentioning
confidence: 99%
“…(3) Spectral angle mapping (SAM) [51] reflects the degree of spectral distortion and calculates the angle between the corresponding pixels of the fused image and the reference image on the triad. SAM = 0 means that there is no spectral distortion:…”
Section: Evaluation Methodmentioning
confidence: 99%
“…Traditionally, both multispectral and hyperspectral imaging have been used for remote sensing and have an increased number of applications in phenomics. A multispectral system has been developed to improve the original colour of images for fruit recognition [ 65 ]. The authors fused the original colour image with an infrared image using nonlinear Daubechies wavelet transform (DWT).…”
Section: Reviewmentioning
confidence: 99%
“…The features extracted from an image are disposed in the so-called “feature vectors.” The construction of feature vectors uses a wide set of methods to identify the objects in an image. The main features are edges, intensity of image pixels [ 39 ], geometries [ 158 ], textures [ 154 , 159 ], image transformations, e.g., Fourier [ 160 ] or Wavelet [ 65 , 161 ] or combinations of pixels of different colour spaces [ 131 ]. The end goal of feature extraction is to feed up a set of classifiers and machine learning algorithms (see below).…”
Section: Reviewmentioning
confidence: 99%
“…Tradicionalmente ambos sistemas se han empleado en el campo de la teledetección, y con la llegada y auge de la fenómica el número de aplicaciones se ha visto incrementado. En un ejemplo de aplicación, un sistema multiespectral fue empleado para mejorar las imágenes originales para el reconocimiento de frutos [97]. Aquí, los autores del trabajo fusionaron las imágenes en color originales con infrarrojo, utilizado transfomadas discretas wavelet de Daubechies (Daubechies DWT).…”
Section: Sistemas Multi E Hiperespectralesunclassified
“…La construcción de un vector de características hace uso de una amplia variedad de métodos para identificar los objetos de una imagen. Las principales características son: bordes, valores de intensidad de píxeles [71], geometrías [205], texturas [201,206], transformaciones de la imagen como la transformada de Fourier [207], o la de Wavelet [97,208] o combinaciones de píxeles de diferentes espacios de color [122]. El objetivo final de la extracción de características es alimentar a un conjunto de clasificadores y/o algoritmos de aprendizaje automatizado (ML) (Sec.…”
Section: Extracción De Característicasunclassified