The paper presents an exact solution to the boundary value problem describing the steady-state unidirectional flow of a viscous incompressible fluid. The fluid moves in an infinite horizontal strip (infinite fluid layer). The fulfillment of the no-slip condition is postulated at the lower boundary of the viscous fluid layer. At the upper boundary, which is assumed to be rigid, non-uniform velocity distribution is specified. The deformation of the free boundary is neglected due to the use of the rigid-lid boundary condition. The exact solution to the equations of the hydrodynamics of incompressible fluids automatically satisfies the continuity equation (the incompressibility equation). The velocity function is harmonic in this case. The simplest exact solution satisfying the Laplace equation is constructed, which takes into account the features of the velocity field along the transverse (vertical) coordinate and one of the longitudinal (horizontal) coordinates. The paper analyzes the topological properties of the velocity field, the tangential stress field, the vorticity vector, specific kinetic energy, and specific helicity.