In this work, two-dimensional hydroelastic solitary waves in the presence of constant vorticity are studied. Time-dependent conformal mapping techniques first developed for irrotational waves are applied subject to appropriate modification. An illustrative high-order Nonlinear Schrödinger Equation is presented to investigate whether a given envelope collapses into a singular point in finite time by using virial theory. Travelling solitary waves on water of infinite depth are computed for different values of vorticity and new generalised solitary waves are discovered. The stabilities of these waves are examined numerically by using fully nonlinear time-dependent computations which confirm the virial theory analysis.