. (2012) 'Electried thin lm ow at nite Reynolds number on planar substrates featuring topography.', International journal of multiphase ow., 44 . pp. 48-69. Further information on publisher's website:http://dx.doi.org/10.1016/j.ijmultiphaseow.2012.03.010Publisher's copyright statement: NOTICE: this is the author's version of a work that was accepted for publication in International Journal of Multiphase Flow. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reected in this document. Changes may have been made to this work since it was submitted for publication. A denitive version was subsequently published in International Journal of Multiphase Flow, 44, September 2012, 10.1016/j.ijmultiphaseow.2012 Additional information:
Use policyThe full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that:• a full bibliographic reference is made to the original source • a link is made to the metadata record in DRO • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders.Please consult the full DRO policy for further details.
AbstractThe flow of a gravity-driven thin liquid film over a substrate containing topography, in the presence of a normal electric field, is investigated. The liquid is assumed to be a perfect conductor and the air above it a perfect dielectric. Of particular interest is the interplay between inertia, for finite values of the Reynolds number, Re, and electric field strength, expressed in terms of the Weber number, We, on the resultant free-surface disturbance away from planarity. The hydrodynamics of the film are modelled via a depth-averaged form of the Navier-Stokes equations which is coupled to a Fourier series separable solution of Laplace's equation for the electric potential: detailed steady-state solutions of the coupled equation set are obtained numerically.The case of two-dimensional flow over different forms of discrete and periodically varying spanwise topography is explored. In the case of the familiar free-surface capillary peaks and depressions that arise for steep topography, and become more pronounced with increasing Re, greater electric field strength affects them differently. In particular, it is found that for topography heights commensurate with the long-wave approximation: (i) the capillary ridge associated with a step-down topography at first increases before decreasing, both monotonically, with increasing We; (ii) the free-surface hump which arises at a step-up topography continues to increase monotonically with increasing We, the increase achieved being smaller the larger the value of Re.A series of results for the more practically relevant problem of three-dimensional film flow over substrate containing a localised squa...