The broad applicability of receptor theory to diverse species, from invertebrates to mammals, provides evidence for the evolution in complexity of pharmacologic receptor diversification and of receptor-effector signal transduction mechanisms. However, pre-mammalian species have less receptor subtype differentiation, and thus, might share signal transduction pathways to a greater extent than do mammals, a phenomenon that we term 'pharmacologic congruence'. We have demonstrated previously that the lowest species considered to have a centralized nervous system, planarians, display both abstinence-induced and antagonist-precipitated withdrawal signs, indicative of the development of physical dependence. We report here: (1) amphetamine abstinence-induced withdrawal, and (2) the attenuation of cocaine and amphetamine, but not cannabinoid agonist (WIN 52212-2), abstinence-induced withdrawal by the opioid receptor antagonist naloxone and by the selective kappa-opioid receptor subtype antagonist nor-BNI (nor-Binaltorphimine), but not by the selective mu-opioid or the delta-opioid receptor subtype antagonists CTAP (D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH(2)) and naltrindole. These results provide evidence that the withdrawal from cocaine and amphetamine, but not cannabinoids, in planarians is mediated through a common nor-BNI-sensitive (kappa-opioid receptor-like) pathway.