Ultrasonic velocity measurement is a well-established method to measure properties and estimate strength as well as detect and locate damage. Determination of accurate and repeatable ultrasonic wave velocities can be difficult due to the influence of environmental and experimental factors. Diffuse fields created by a multiple scattering environment have been shown to be sensitive to homogeneous strain fields such as those caused by temperature variations, and Coda Wave Interferometry has been used to measure the thermally induced ultrasonic velocity variation in concrete, aluminum, and the Earth's crust. In this work, we analyzed the influence of several parameters of the experimental configuration on the measurement of thermally induced ultrasonic velocity variations in a carbon-fiber reinforced polymer plate. Coda Wave Interferometry was used to determine the relative velocity change between a baseline signal taken at room temperature and the signal taken at various temperatures. The influence of several parameters of the experimental configuration, such as the material type, the receiver aperture size, and fiber orientation on the results of the processing algorithm was evaluated in order to determine the optimal experimental configuration.