2013
DOI: 10.1016/j.conengprac.2013.04.009
|View full text |Cite
|
Sign up to set email alerts
|

Nonlinear model predictive control of a magnetic levitation system

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
5

Citation Types

0
39
0
1

Year Published

2014
2014
2023
2023

Publication Types

Select...
8
1

Relationship

0
9

Authors

Journals

citations
Cited by 99 publications
(40 citation statements)
references
References 35 publications
0
39
0
1
Order By: Relevance
“…Los sistemas de levitación magnética en los últimos años se han considerado como un banco de pruebas para diversas estrategias de control (Lei, 2008), (Golob, 2003), (Qin, 2014), (Bächle, 2013) y (Beltran, 2015. Además, se han popularizado por las diversas aplicaciones que tienen, tales como: cojinetes magnéticos (Chen, 2010) y (Du, 2010); sistemas para trenes de levitación magnética (Hasirci, 2011); aislamiento de vibraciones (Tsuda, 2009); microrobots magnéticos (Kummer, 2010); máquinas eléctricas (Arrendondo, 2008); sistema de transportación magnética (Wai, 2011); sistemas de posicionamiento nanométrico (Kim, 2007), entre muchas otras (Peijnenburg, 2006), (Kimman, 2010), (Lee, 2006).…”
Section: Introductionunclassified
“…Los sistemas de levitación magnética en los últimos años se han considerado como un banco de pruebas para diversas estrategias de control (Lei, 2008), (Golob, 2003), (Qin, 2014), (Bächle, 2013) y (Beltran, 2015. Además, se han popularizado por las diversas aplicaciones que tienen, tales como: cojinetes magnéticos (Chen, 2010) y (Du, 2010); sistemas para trenes de levitación magnética (Hasirci, 2011); aislamiento de vibraciones (Tsuda, 2009); microrobots magnéticos (Kummer, 2010); máquinas eléctricas (Arrendondo, 2008); sistema de transportación magnética (Wai, 2011); sistemas de posicionamiento nanométrico (Kim, 2007), entre muchas otras (Peijnenburg, 2006), (Kimman, 2010), (Lee, 2006).…”
Section: Introductionunclassified
“…Calculation of the magnetic permanence of the air gap for each pole in a small sampling time weakens any control algorithm; the main reason for this situation is that calculation of the magnetic permanence of the air gap for each pole means that applied force by each pole is being obtained, when a time delay occurs in data acquisition because of the low processing speed of the data acquisition card (and it is commonly accepted that every magnetic levitation application requires very high processing data acquisition speed due to magnetic levitation's highly nonlinear nature [12]), proper actuation signals for coils cannot be produced. As an alternative solution, one may think that using a force sensor may be useful; however, many magnetic levitation systems are very vulnerable in terms of disturbance and, because of this, using a force sensor is not a good engineering implementation; in some cases, the electromagnetic force is generally measured by an additional system consisting of a copy of the levitating object located in a load cell [12,13].…”
Section: Introductionmentioning
confidence: 99%
“…As an alternative solution, one may think that using a force sensor may be useful; however, many magnetic levitation systems are very vulnerable in terms of disturbance and, because of this, using a force sensor is not a good engineering implementation; in some cases, the electromagnetic force is generally measured by an additional system consisting of a copy of the levitating object located in a load cell [12,13]. The only remaining reasonable technique for success of controlling magnetic levitation systems is estimating the magnetic force value for each pole.…”
Section: Introductionmentioning
confidence: 99%
“…In this scenario, Model Predictive Control (MPC) has gained increasing attention in the last few years and has been implemented in a variety of applications and in different forms to tackle issues of nonlinearities and variability of the operating conditions. A rich literature describes the potentialities of this approach in magnetic levitation [19][20][21][22][23]. In particular, MPC has shown an improved performance in compensating for gyroscopic effects [24] and revealed properties of good stability and robustness when compared with standard control architectures for the levitation of flywheels [25].…”
Section: Introductionmentioning
confidence: 99%