2017
DOI: 10.1016/j.jfranklin.2017.06.005
|View full text |Cite
|
Sign up to set email alerts
|

Nonlinear model-predictive control with disturbance rejection property using adaptive neural networks

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
22
0
1

Year Published

2018
2018
2023
2023

Publication Types

Select...
8

Relationship

0
8

Authors

Journals

citations
Cited by 24 publications
(23 citation statements)
references
References 31 publications
0
22
0
1
Order By: Relevance
“…Proof: Since the optimization problem (26) is feasible, (27) and (28) are satisfied and (28) guarantees (24). Since…”
Section: Online Mode-dependent Mpc Designmentioning
confidence: 99%
See 2 more Smart Citations
“…Proof: Since the optimization problem (26) is feasible, (27) and (28) are satisfied and (28) guarantees (24). Since…”
Section: Online Mode-dependent Mpc Designmentioning
confidence: 99%
“…Thus the optimization problems of NMPC are nonlinear and nonconvex, which are difficult to solve even for cases involving only few variables [23]. If the nonlinear items can be represented by neural network model [28], T-S fuzzy model [29]- [31] or polyhedral model [23], [32], [33], the linear analytical expressions of original systems can be obtained and the relatively mature results on stability and feasibility of linear MPC can be applied in nonlinear MJSs. Considering the nonlinear MJS with nonhomogeneous process, the constrained MPC design was proposed and avoids solving nonlinear optimization problem through applying a differential-inclusion-based design [23].…”
Section: Introductionmentioning
confidence: 99%
See 1 more Smart Citation
“…where e(k) is the increment of the estimation error, which can be formulated as [34] e(k) = (∂e(k)/∂W(k)) T W(k)…”
Section: A the Online Learning Rbfnnmentioning
confidence: 99%
“…Gelişen teknoloji ile birlikte çalışma sırasında modelin optimize edildiği uyarlamalı MÖK çalışmaları literatürde yerini almıştır. Örneğin[27]'de sistem parametrelerindeki belirsizliklerle mücadele etme amacı ile adaptif yapay sinir ağı geliştirilmiş ve MÖK içerisinde tahmin modeli olarak kullanılmıştır. Başka bir çalışmada ise götit prosesine ağırlıklı sürekli karıştırma reaktörü modeli uygulanmış ve Lyapunov fonksiyonu kullanılarak sistem tanımlama ile elde edilen model çalışma sırasında özgün yazılım ile optimize edilmiştir[28].…”
unclassified