This paper presents an enhanced perturb and observe (P&O) method for reconciling the trade-off problem between the dynamic response and steady-state oscillations in maximum power point tracking (MPPT). The constraint of having to sacrifice either the dynamic response or the steady-state oscillations has been solved. The method uses the relationship between the open-circuit voltage and maximum power voltage from the fractional open-circuit voltage (FOCV) MPPT method to establish a valid, reduced, and confined search space within which an enhanced P&O via dynamic adaptive step size terminates the search for the maximum power point. The feasibility of the proposed method has been validated by comparing its performance with the conventional P&O algorithm. It was noted that the proposed method increased the operational efficiency of the PV module to 99.89%, reduced the tracking time to 1.8 ms, and preserved the good steady-state response with a power attenuation of less than 0.10 W or relative 0.16% under MATLAB environment. An experimental setup was used to collect real irradiance and temperature data which was used in real-time simulations. The enhanced P&O method was able to resist abrupt changes in irradiance and temperature as it effectively and efficiently followed the maximum power point (MPP). Finally, to appreciate the supremacy of the proposed method, it was compared to nineteen different MPPT methods from literature. The comparison showed that the enhanced P&O MPPT method is highly efficient and effective for MPPT in photovoltaic (PV) generation systems.