1997
DOI: 10.1103/physrevlett.78.3282
|View full text |Cite
|
Sign up to set email alerts
|

Nonlinear Optical Pulse Propagation in the Single-Cycle Regime

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

4
515
2
7

Year Published

2005
2005
2023
2023

Publication Types

Select...
5
2
1

Relationship

0
8

Authors

Journals

citations
Cited by 825 publications
(528 citation statements)
references
References 6 publications
4
515
2
7
Order By: Relevance
“…Their model associated with specific physical effects occuring in filamentation became rapidly a standard in the field. In the frequency domain corresponding to the retarded time t ≡ t lab − z/v g , this model reads [3,12,20,30,53,76,84]:…”
Section: Propagationmentioning
confidence: 99%
See 2 more Smart Citations
“…Their model associated with specific physical effects occuring in filamentation became rapidly a standard in the field. In the frequency domain corresponding to the retarded time t ≡ t lab − z/v g , this model reads [3,12,20,30,53,76,84]:…”
Section: Propagationmentioning
confidence: 99%
“…Brabec and Krausz [3] have derived an envelope equation modeling the propagation of laser pulses with durations of a few to many optical cycles in a nonlinear dispersive medium. It was called the nonlinear envelope equation and is obtained from a wave equation by assuming that the pulse envelope is slowly varying in the propagation direction z, but not necessarily in time.…”
Section: Propagationmentioning
confidence: 99%
See 1 more Smart Citation
“…(15) is (with ∂ t ≡ d/dt) the lowest-order approximation to the GFEA few-cycle propagation corrections [8,9], which is equivalent to the SEWA (Slowly Evolving Wave Approximation) correction derived by Brabec and Krausz [11]. Although the full form is not included for reasons of brevity, it could easily be introduced if the extra accuracy was desired; indeed we routinely use it in our simulation codes.…”
Section: Single-field Raman Theorymentioning
confidence: 99%
“…As the optical bandwidth increases, higher-order dispersion terms cannot be neglected. Thus, within the frame of the SVEA, the answer to shorter and higher-intensity pulse modeling implies an increasing number of terms added to the NLS equation, which is the so-called generalized NLS equation (GNLSE) approach [2]. The GNLSE implies numerical integration, and has indeed provided successful modeling of supercontinuum generation experiments in well-characterized optical media such as silica glass fibers [3].…”
Section: Introductionmentioning
confidence: 99%