2007
DOI: 10.1007/978-3-540-72590-9_63
|View full text |Cite
|
Sign up to set email alerts
|

Nonlinear Optimization of IEEE 802.11 Mesh Networks

Abstract: Abstract. In this paper, we propose a novel optimization model to plan IEEE 802.11 broadband access networks. From a formal point of view, it is a mixed integer non-linear optimization model that considers both co-channel and inter-channel interference in the same compact formulation. It may serve as a planning tool by itself or to provide a performance bound to validate simpler planning models such as those in [3].

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
2
0
1

Year Published

2008
2008
2017
2017

Publication Types

Select...
2
2

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
(3 citation statements)
references
References 4 publications
0
2
0
1
Order By: Relevance
“…Applications in communication engineering and computer science include the optimal response to a cyber attack (Goldberg, Leyffer andSafro 2012, Altunay, Leyffer, Linderoth andXie 2011), wireless bandwidth allocation (Bhatia, Segall and Zussman 2006, Sheikh and Ghafoor 2010, Costa-Montenegro, González-Castaño, Rodriguez-Hernández and Burguillo-Rial 2007, selective filtering (Sinha, Yener andYates 2002, Soleimanipour, Zhuang andFreeman 2002), optical network performance optimization (Elwalid, Mitra and Wang 2006), network design with queuing delay constraints (Boorstyn and Frank 1977), and network design topology (Bertsekas andGallager 1987, Chi, Jiang, Horiguchi andGuo 2008), multi-vehicle swarm communication network optimization (Abichandani, Benson and Kam 2008), the design of optimal paths (i.e., minimum time) for robotic arms (Gentilini, Margot and Shimada 2013), the synthesis of periodic waveforms by tripolar pulse codes (Callegari, Bizzarri, Rovatti and Setti 2010), and the solution of MILP under uncertainty of the parameters through robust optimization (Ben-Tal and Nemirovski 1995).…”
Section: Summary Of Minlp Applicationsmentioning
confidence: 99%
“…Applications in communication engineering and computer science include the optimal response to a cyber attack (Goldberg, Leyffer andSafro 2012, Altunay, Leyffer, Linderoth andXie 2011), wireless bandwidth allocation (Bhatia, Segall and Zussman 2006, Sheikh and Ghafoor 2010, Costa-Montenegro, González-Castaño, Rodriguez-Hernández and Burguillo-Rial 2007, selective filtering (Sinha, Yener andYates 2002, Soleimanipour, Zhuang andFreeman 2002), optical network performance optimization (Elwalid, Mitra and Wang 2006), network design with queuing delay constraints (Boorstyn and Frank 1977), and network design topology (Bertsekas andGallager 1987, Chi, Jiang, Horiguchi andGuo 2008), multi-vehicle swarm communication network optimization (Abichandani, Benson and Kam 2008), the design of optimal paths (i.e., minimum time) for robotic arms (Gentilini, Margot and Shimada 2013), the synthesis of periodic waveforms by tripolar pulse codes (Callegari, Bizzarri, Rovatti and Setti 2010), and the solution of MILP under uncertainty of the parameters through robust optimization (Ben-Tal and Nemirovski 1995).…”
Section: Summary Of Minlp Applicationsmentioning
confidence: 99%
“…Many applications can also be found in chemical engineering [6], such as chemical processes control [7], life cycle optimization for sustainable design [20] and production planning in multi-plant facilities [23]. Other applications include channel interference [11] and optimal resource management [39] in wireless networks, optimal path for vehicles [1,21], tra c modeling [18], conflict resolution involving multiple aircraft [37] and flight clearance [15].…”
mentioning
confidence: 99%
“…Entre muchos otros, la MINLP se ha aplicado con éxito (Leyffer, 2010;Burer y Letchford, 2012;Belotti et al, 2013) a problemas de ingeniería como el diseño óptimo de redes de distribución de agua (Bragalli et al, 2006;Karuppiah y Grossmann, 2006), de gas (Martin et al, 2006), de energía (Murray y Shanbhag, 2006), de transporte (Fügenschuh et al, 2010) o de telecomunicación (Boorstyn y Frank, 1977); y a diversos casos de ingeniería informática como, por ejemplo, la optimización del rendimiento de redes de fibra óptica (Elwalid et al, 2006), el equilibrado del volumen de transmisión en redes inalámbricas malladas (Guo y Huang, 2011), la asignación óptima de ancho de banda inalámbrico (Costa-Montenegro et al, 2007) o la resolución de ciberataques (Altunay et al, 2011). También en otras áreas de la ingeniería y la industria destacan aplicaciones de la MINLP como la minimización del desperdicio de materia prima en la industria papelera (Harjunkoski et al, 1999), el diseño de componentes electrónicos (van de Braak et al, 2004), la recarga de combustible de reactores nucleares (Quist et al, 1999), la prevención de apagones en sistemas de energía eléctrica (Bienstock y Mattia, 2007;Donde et al, 2005), la minimización del impacto ambiental en plantas industriales (Eliceche et al, 2007), la optimización de estructuras de construcción (Guerra et al, 2011), el diseño óptimo de sistemas de aislamiento térmico (Abhishek et al, 2010b), la búsqueda de un sistema sostenible de producción y suministro de combustible (Corsano et al, 2011), el diseño de planes de respuesta ante vertidos de crudo (You y Leyffer, 2011), la optimización del embarque en aviones (van der Briel et al, 2005) o el diseño de la distribución de bloques (departamentos, estancias, etc.)…”
Section: Programación No Lineal Entera Mixtaunclassified