We show that Hermitian matrix models support the occurrence of a new type of phase transition characterised by dispersive regularisation of the order parameter near the critical point. Using the identification of the partition function with a solution of a reduction of the Toda hierarchy, known as Volterra system, we argue that the singularity is resolved by the onset of a multi-dimensional dispersive shock of the order parameter in the space of coupling constants. This analysis explains the origin and mechanism leading to the emergence of chaotic behaviours observed in M 6 matrix models and extends its validity to even nonlinearity of arbitrary order.