This study proposed an improved analytical method for electromagnetic field analysis of a wound rotor synchronous machine (WRSM) considering the permeability of soft magnetic materials. A simplified analytical model considering the magnetic permeability of each region is presented. The governing equations of each region are derived from Maxwell’s equations and the electromagnetic field theory, and a general solution is derived by using mathematical techniques. The analytical solutions of all domains are derived by calculating the boundary conditions. To validate the proposed analytical method, the radial and circumferential magnetic flux densities are compared with finite element analysis (FEA) results. In addition, electromagnetic performance parameters such as flux linkage, back-electromotive force, and torque are determined using electromagnetic theories. In particular, the magnetic saturation of the soft magnetic material is due to field and armature current, and the superiority of the proposed method is demonstrated by comparing the improved analytical method considering the global saturation of each region with the nonlinear FEA result considering local saturation. The proposed analytical method can be widely used in the initial and optimal design of WRSM because it can consider saturation of the core due to changes in field and armature current.