2014 Sensor Signal Processing for Defence (SSPD) 2014
DOI: 10.1109/sspd.2014.6943307
|View full text |Cite
|
Sign up to set email alerts
|

Nonlinear spectral unmixing of hyperspectral images using residual component analysis

Abstract: This paper presents a nonlinear mixing model for linear/nonlinear hyperspectral image unmixing. The proposed model assumes that the pixel reflectances are linear mixtures of endmembers, corrupted by an additional nonlinear term and an additive Gaussian noise. A Markov random field is considered for nonlinearity detection based on the spatial structure of the nonlinear terms. The observed image is segmented into regions where nonlinear terms, if present, share similar statistical properties. A Bayesian algorith… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 29 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?