2016
DOI: 10.1007/s10182-016-0271-2
|View full text |Cite
|
Sign up to set email alerts
|

Nonlinear surface regression with dimension reduction method

Abstract: This paper considers nonlinear regression analysis with a scalar response and multiple predictors. An unknown regression function is approximated by radial basis function models. The coefficients are estimated in the context of M-estimation. It is known that ordinary M-estimation leads to overfitting in nonlinear regression. The purpose of this paper is to construct a smooth estimator. The proposed method in this paper is conducted by a two-step procedure. First, the sufficient dimension reduction methods are … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2018
2018
2018
2018

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 33 publications
0
0
0
Order By: Relevance