Free vibration of functionally graded (FG) sandwich plates partially supported by a Pasternak elastic foundation is studied. The plates consist of three layers, namely a pure ceramic hardcore and two functionally graded skin layers. The effective material properties of the skin layers are considered to vary in the plate thickness by a power gradation law, and they are estimated by Mori--Tanaka scheme. The quasi-3D shear deformation theory, which takes the thickness stretching effect into account, is adopted to formulate a finite element formulation for computing vibration characteristics. The accuracy of the derived formulation is confirmed through a comparison study. The numerical result reveals that the foundation supporting area plays an important role on the vibration behavior of the plates, and the effect of the layer thickness ratio on the frequencies is governed by the supporting area. A parametric study is carried out to highlight the effects of material distribution, layer thickness ratio, foundation stiffness and area of the foundation support on the frequencies and mode shapes of the plates. The influence of the side-to-thickness ratio on the frequencies of the plates is also examined and discussed.