We consider complete state tracking feedback control of a ship having two controls, namely surge force and yaw moment. The ship model has similarities with chained form systems but cannot directly be transformed in chained form. In particular, the model has a drift vector ® eld as opposed to the drift-free chained form systems. It is shown here that methods developed for tracking control of chained form systems still can be used for developing a tracking control law for the ship. Through a coordinate transformation the model is put in a triangular-like form which makes it possible to use integrator backstepping to develop a tracking control law. The control law steers both the position variables and the course angle of the ship, providing exponential stability of the reference trajectory. Experimental results are presented where the control law is implemented for tracking control of a model of an oOE shore supply vessel, scale 1 : 70. In the experiments the ship converges exponentially to a neighbourhood of the reference trajectory, and stays close with errors depending on factors as unmodelled dynamics, parameter uncertainty, measurement noise, thruster saturation, waves, currents and position measurement failures.